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Linear state space models and the Kalman filtering

2.1
The model

A linear wide sense state space model for an observable p-variate stochas-

tic process Yt, defined on an appropriate probability space (Ω,F ,P), is de-

scribed by the following set of equations:

Yt = Ztαt + dt + εt

αt+1 = Ttαt + ct + Rtηt

α1 ∼ (a1, P1).

(2-1)

The first equation is usually called the measurement equation and the second

is known as the state equation. The unobservable m-variate process αt is

termed state. The error terms εt and ηt are respectively p-variate and r-

variate second-order processes that are uncorrelated in time and from each

other, with var(εt) = Ht and var(ηt) = Qt. The remaining system matrices

Zt, dt, Ht, Tt, ct, Rt and Qt evolve deterministically.

2.2
The Kalman equations

In this Thesis, I will adopt the following notation:

– at|j is a (an equivalence class of) random vector(s) with coordi-

nates ati|j, i = 1, . . . , m, representing the unique linear orthog-

onal projection (cf. Kubrusly, 2001, Theorem 5.52), evaluated on

each (equivalence class of) coordinate(s) αti of αt, onto S ′ ≡
span{1, Y11, . . . , Y1p, . . . , Yj1, . . . , Yjp} ⊆ L2 ≡ L2(Ω,F ,P) - the subja-

cent topology is that induced by the usual inner product, which is given

by < X, Y >≡ E(XY ) =
∫

Ω
X(ω)Y (ω)P(dω), ∀X, Y ∈ L2.

– Pt|j ≡ E
[
(αt − at|j)(αt − at|j)′

]
;

– υt ≡ Yt − Ztat|t−1 − dt and Ft ≡ E(υtυ
′
t) = ZtPt|t−1Z

′
t + Ht.
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The Kalman filtering (prediction, updating and smoothing) gives the above

orthogonal projections evaluations and the corresponding mean square error

matrices. The corresponding equations are given as follows:

– Prediction equations

at+1|t = Ttat|t + ct

Pt+1|t = TtPt|tT
′
t + RtQtR

′
t

(2-2)

– Updating or filtering equations

at|t = at|t−1 + Pt|t−1Z
′
tF

−1
t υt

Pt|t = Pt|t−1 − Pt|t−1Z
′
tF

−1
t ZtPt|t−1

(2-3)

– Smoothing equations (for a given n ≥ t)

at|n = at|t−1 + Pt|t−1rt−1

rt−1 = Z
′
tF

−1
t υt + (Tt − TtPt|t−1Z

′
tF

−1
t Zt)

′rt

Pt|n = Pt|t−1 − Pt|t−1Nt−1Pt|t−1

Nt−1 = Z
′
tF

−1
t Zt + (Tt − TtPt|t−1Z

′
tF

−1
t Zt)

′Nt(Tt − TtPt|t−1Z
′
tF

−1
t Zt)

rn = 0 and Nn = 0

(2-4)

Details concerning the derivations of these formulae are found in Harvey

(1989), Brockwell and Davis (1991), Harvey (1993), de Jong (1989), Hamilton

(1994), Tanizaki (1996), Durbin and Koopman (2001), Brockwell and Davis

(2003) and Shumway and Stoffer (2006).

2.3
Introducing linear restrictions

From now on, it is assumed that the process αt in (2-1) satisfies linear

restrictions as follows:

Assumption 1 The random vectors αt satisfy the following (possibly time

varying) linear restrictions
Atαt = qt, (2-5)

where, for each t, At is a k × m matrix and qt is a k × 1 (possibly random)

vector.

Observe that the restrictions enunciated in eq.(2-5) are rather general. In

fact, it encapsulates affine restrictions of the kind Atαt + bt = qt by defining

q′t = qt − bt and allows the number of restrictions k to be time-varying. In
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practical situations, justification of such constraints in (2-5) arises naturally

from the characteristics of the problem being modeled; see for instance the

restrictions imposed on a demand system problem in Doran and Rambaldi

(1997).

In the remaining of the Thesis, Assumption 1 will be considered in almost

every topic to be discussed and, in due course, it may be added with some

further structure on the linear restrictions.
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